
Moving from Internal to External Services using
Aspects

Martin Henkel1, Gustav Boström and Jaana Wäyrynen

Department of Computer and Systems Science
Stockholm University and Royal Institute of Technology

Forum 100, SE-164 40 Kista, Sweden
1 Contact author, Tel: +46 16 16 42, Fax: +46 8 703 90 25

martinh@dsv.su.se, gusbo@kth.se, jaana@dsv.su.se

Abstract. Service oriented computing and web service technology provide the
means to structure an organisation’s internal IT resources into a highly
integrated network of services. In e-business and business process integration
the internal services are interconnected with other, external organisations’
resources to form virtual organisations. This move from using services
internally to external use puts new non-functional requirements on the service
implementation. Without any supporting technologies, meeting these new
requirements can result in re-writing or changing a large part of the service
implementation. In this paper we argue that aspect oriented programming is an
important technique that can be used to facilitate the implementation of the
new requirements that arises when moving from internal to external services.
The suggested solution is illustrated by an example where quality of service
metrics is implemented by using aspect oriented programming.

Keywords: Service oriented computing, Non-functional requirements,
Interoperability, Aspect oriented programming

Topics: Separation of concerns, Connecting legacy applications to services,
Monitoring service executions

1 Introduction

Service oriented computing, in particular the web service technologies, has drawn
a lot of attention in recent years. The reason for this attention is multi-faceted. One
reason is based on the view that service oriented computing is a natural step of
evolution from object-oriented and component based computing. Another aspect that
makes services interesting is that they can be used to structure and interconnect an
organisation’s internal IT systems. Even more importantly, services can be used
externally to enable interconnection of enterprises [1], thus enabling the forming of
networked or “virtual” enterprises [2].

The interconnecting of enterprises via service technology requires that part of an
enterprise’s internal systems must be made available to external organisations. This
shift from internal to external use puts new requirements on existing IT systems. First
of all, the systems must be able to communicate, regardless of differences in
platforms and languages. This interoperability can be achieved by conforming to
technical standards. The existing and upcoming web service standards such as SOAP
[3] and WSDL [4] are important steps towards interoperable services. A second,
somewhat overlooked part is that providing external services also puts new non-
functional requirements on existing systems, such as scalability, security and quality.
These requirements are sometimes also called “illities” [5].

Within the border of a company these requirements might be implicitly met by
assumptions about the company’s secure intranet, the well-defined number of users,
the support departments ability to monitor the quality etc. However, exposing parts of
the system to external partners will require that these implicit assumptions need to be
converted into explicit, measurable, and monitorable implementations. Furthermore,
the new non-functional requirements posed need to be implemented as part of the
existing systems.

Implementations of new non-functional requirements often cuts across the entire
system, i.e. a large part of the existing system code is affected by new non-functional
requirements. Thus, when moving from internal to external service use, a potentially
large part of the system code needs to be changed. The need to change large portions
of code to implement new non-functional requirements is a problem, since it
increases the risk of major redesign when moving from internal to external use of
services. The question is how to overcome this problem.

Aspect Oriented Programming (AOP) is proposed as a technique to implement
functionality that cuts across an entire system [6]. Thus, aspect orientation may be a
solution that can facilitate the implementation of the non-functional requirements that
arises when internal systems are to be exposed as external services.

In this paper we argue that aspect oriented programming can be a useful technique
for moving from internal to external services. The paper begins with a short
introduction to service oriented computing and aspect oriented programming. The
introduction is followed by a description of the problem and the proposed solution.
Then, we provide an example of how aspect-orientation can be applied in the context
of a service that needs to be changed due to changed non-functional requirements.
The article ends with a discussion of the proposed solution’s applicability and a
discussion of further work.

1.1 Service Oriented Computing

A service is an “act or performance offered by one party to another” [7]. Services
offered by IT systems have been dubbed “e-Services” [8] and “software services”. In
this paper the term service denotes services offered by one system to another system,
i.e. where both parties are software systems. This excludes services that are offered to
(human) users via graphical user interfaces.

Service Oriented Computing (SOC) builds on the component based development
(CBD) principles of building systems by combining software parts. In contrast to
components, a service is a run-time programming interface rather than a
physical/binary entity that needs to be installed before use. This distinction between
runtime provisioning and implementation is made by component based development
methods [9]. The distinction might seem finicky, but it has a profound impact on how
services are used. A provider of a service is responsible for the run-time availability
of the service, whereas a component provider is only responsible for the construction
and delivering of the binary component. Thus, building a component based system is
about assembling software parts, while building a service-oriented system is about
communicating with services offered by different providers.

The focus on run-time availability and provider responsibility makes services an
ideal metaphor for interconnecting an organisation’s IT-systems (internal use), where
each system is a separate run-time entity. For the same reason, service oriented
computing can play a major role in the interconnection of systems belonging to
separate organisations (external use).

1.2 Aspect Oriented Programming

Aspect oriented programming is a paradigm that attempts to help in implementing
concerns that are present in many modules and therefore crosscuts a system, that is
cross-cutting concerns. Cross-cutting concerns are difficult to modularise using
existing object-oriented techniques since there is no logical place in which to
implement them. An illustrative example is logging of method-calls. Using existing
object-oriented techniques the code for implementing this would be spread out in all
methods that require logging. Changing the way logging is done, and especially,
where it is performed is therefore difficult to accomplish without changing all
methods that need to be logged. This poor modularisation leads to code that is
difficult to maintain. The fact that you need to deal with several concerns, logging
and business logic, in the same method also adds to the complexity of the code.

Aspect oriented programming provides a way to modularise these cross-cutting
concerns in an efficient manner by factoring out logic belonging to a specific concern
into an Aspect [10]. In this article we use AspectJ as a tool to implement aspect
oriented programming [11]. An aspect in AspectJ consists of Pointcuts, and Advice
(in AspectJ an aspect can also contain Inter Type declarations, but this concept is not
used in this article). Pointcuts describe where the aspect should apply in terms of the
object-oriented systems structure, e.g. the pointcuts of the logging aspect would
describe where in the system logging should be performed in terms of the classes and
methods of the system. Advice describes what should happen at these pointcuts, e.g.
how the logging should be carried out. The AspectJ keywords aspect, pointcut and
advice are added to the Java-syntax in order to support these concepts. The process of
combining the aspects and the classes into an executable system is called aspect
weaving.

1.3 Functional, non-functional and cross-cutting requirements

Functional requirements are statements of services that the system should provide.
This can also be said as describing what the system should do. Non-functional
requirements, on the other hand, are focused on how the system should perform the
services [12]. An example of a functional requirement on an ATM-machine could for
example be that an ATM-machine should be able to dispense money to the bank’s
customers. A non-functional requirement could be that this service has to be
performed securely and with an acceptable response time. Other examples of non-
functional requirements are performance, traceability, scalability and error handling.
A problem with non-functional requirements is that they are often crosscutting, i.e.
they affect many modules of the system. For example, security needs to be addressed
in many parts of an ATM-system. It is therefore difficult to modularise crosscutting
requirements. This can make systems difficult to maintain and evolve [13].

2 Moving from Internal to External Services

As stated in the introduction, service oriented computing promises to interconnect
organisations. This is done by integrating and automating business processes that
span across several organisations. Service oriented architectures (SOA) and service
technologies, such as web services form the fundament for such integration.
Integrating business processes and automating them relies on the integration of the
organisation’s IT systems. This in turn, requires that integration points between the
systems need to be established. Systems, which previously only where used within a
company, need to exchange information with external systems through these
integration points. Interconnecting the processes of two organisations commonly do
not require that all the IT systems need to be integrated. Rather than making an entire
system available externally, a selection of functionality is made. This functionality is
then exposed as services that can be used by external organisations [14]. As
mentioned earlier, the exposed services commonly need to adhere to a new set of
non-functional requirements. Examples of new non-functional requirements are
security, quality of service measurements, and performance monitoring.
Implementing support for these new requirements is instrumental in making the
services available externally.

There exist several solutions to this problem. The first solution that comes to mind
is to rework the entire code to support the new requirements. This can be achieved by
following common refactoring principles, such as those proposed by Fowler [15].
However, this solution requires a lot of work, since each method that should adhere to
the new requirements has to be reviewed. More generic approaches have also been
proposed, such as the addition of an extra layer to existing component-environments
by using generated proxies controlled by proprietary description languages [16].
These generic approaches have a much better chance of reducing the amount of work
required. They are, however, based on proprietary languages and technologies. The
ideal would be a technique which is generic (to avoid too much rework), and at the

same time does not rely on proprietary technologies, servers, and languages. We
propose that aspect oriented programming can be such a technique.

Aspect oriented programming separates the code required to fulfil the new
requirements from the existing code. The new requirements can thus be separately
implemented as aspects, without changing the existing code. These aspects can then
selectively be applied (by aspect weaving) to the parts of the code that need to adhere
to the new requirements. Applying the aspects does not require changing the original
code. For a large system this can save a lot of time.

In the next section we will give an example of how aspect oriented programming
can be used to implement non-functional requirements without a major rework of the
original system.

3 An example: Adding QoS Metrics to Web services

The example in this section describes the steps necessary to extend a web service
with quality of service metrics monitoring (QoS monitoring). The example elucidates
the main point of this paper, that by using aspects, the move from internal services to
external services do not require a major rework of the code. The need to extend web
services with QoS metrics is selected as an example both because it is a likely
scenario, and because it clearly demonstrates how non-functional requirements can be
implemented using aspects. What makes the scenario likely is that enterprises starting
to use the web service technology internally will need to further define, and monitor
their quality of service when starting to use web service technologies as an external
communication mean between enterprises, thus the need to add QoS metrics to web
services.

3.1 Scenario

To illustrate how AOP will help in implementing non-functional requirements
such as QoS metrics let’s imagine a company that provides financial services such as
mortgages and loans for cars. In this business it is essential to know your customers’
credit worthiness. Credit worthiness is determined using the customers’ credit history,
income and other variables. Different financial services require different definitions
and levels of credit worthiness. This information is used in determining whether to
grant applications for both loans and mortgages. Since credit checking is an important
part of this organisation’s business, it is implemented as a web service that can be
reused from all systems within the organisation. Figure 1, below, shows how the
interface to this credit checking service might look like implemented in Java.

public interface CreditCheckingServiceInterface
{
 public boolean hasPaymentRemarks(String name);

 public boolean hasCreditHistory(String name);

 public boolean checkCreditForAmount(String name,int amount);
}

Fig. 1. The interface of the CreditCheckingService

The next step in the organisation’s business plans could be to provide the credit
checking service to external businesses, such as mobile phone operators and car
leasing companies that also need efficient credit check processing. However, before
using the credit checking from their systems, external businesses will require some
form of quality guarantee. For example, a potential customer of the service would
probably ask the following questions:

 How can it be ensured that the service paid for is reliable and running when

needed?

 How can the organisation monitor that the performance is acceptable?

In short, the customers will require some form of agreement that states the

intended quality of service. The agreement can include measurable limits for
performance, cost, up time and other dimensions that affects the overall quality of the
provided web service. For this example we use three QoS dimensions for web service
processes as defined by Sheth et al. [17]: time, cost and reliability.

 Time is a measure of response time of the web service that is to be monitored.

The response time is measured from request arrival to the completion of the
request.

 Cost can be measured by either estimating an average cost for each service
invocation, or by measuring the resources that are consumed to complete a
request (such as processor time, cost of information storage etc).

 Reliability is a measure of technical failure rate, that is monitoring the reliability
will discover how many times the service failed to deliver a response. Sheth et al.
[17] suggest that reliability is to be measured as a ratio of successful
executions/scheduled executions.

The credit checking web service mentioned above is not built with QoS metrics in

mind, since it was designed for internal use only. Adding QoS metrics to the existing
service can be a major undertaking, since code that monitors the metrics need to be
inserted in all parts of the service. Without a technique that helps implement cross-

cutting, non-functional requirements such as QoS metrics, developers are running the
risk of having to redesign a major part of the code. However, applying aspect oriented
programming can reduce this risk. An example of how aspects can be applied in this
case is described in the next section.

3.2 Applying Aspects

Let’s look at how aspects could be applied in the described scenario. The three
QoS dimensions time, cost and reliability define what is to be measured. Before
implementing the actual metrics, it has to be decided where in the application code
the dimensions should be measured. A basic approach would be to add code to
register each metric in the beginning and end of each request, i.e. before and after
each call to the web service. Without using aspects, this approach would require
additional code that has to be inserted in all web service methods. However, using an
aspect-oriented approach, adding QoS metrics to web services would only require the
metrics aspects and their join points to be defined once, without any change to the
original web service implementation.

To implement QoS metrics for the credit checking service, one aspect for each of
the QoS dimension can be implemented. Thus, as an example we have implemented
the aspects PerformanceQoSAspect, CostQoSAspect and ReliabilityQoSAspect .

public aspect PerformanceQoSAspect
{

 Timer timer=new Timer();

 pointcut timedMethods() : (
 execution(public * CreditCheckingService.* (..)));

 before() : timedMethods()
 {
 // Start timing
 }

 after() : timedMethods()
 {
 // End timing
 }
}

Fig. 2. Performance QoS aspect

3.3 Performance Aspect

The performance aspect is intended to measure the Time QoS dimension. Time can
be measured by recording the request/method name, when the request arrived and
when the response was sent. The implementation of this metric requires that two
aspect join points are defined; one at the beginning of each method call and one at the
end. These join points are defined within the AspectJ pointcut “timedMethods”, see
figure 2, above.

3.4 Cost Aspect

Cost can be measured by recording the request/method name for each request.
Using predefined cost for each type of request, the total cost can be calculated. The
measurement of cost can be done by using a join point at the end of each web service
method. The AspectJ example in figure 3 show how an aspect that logs each method
call can be implemented.

F

3

r
m
e

public aspect CostQoSAspect
{

 pointcut costMethods() : (
 execution(public * CreditCheckingService.* (..)));

 after() : costMethods()
 {
 // Log the cost of the executed method
 }
}
ig. 3. Cost QoS aspect

.5 Reliability Aspect

Reliability can be measured by recording if the response of a request is a valid
esponse or an error. In this case, a join point can be defined at the end of each
ethod. The AspectJ implementation shown in figure 4 defines an aspect that logs

very method call that ends with a non-application Exception.

public aspect ReliabilityQoSAspect
{
 pointcut reliabilityMethods() : (
 execution(public * CreditCheckingService.* (..)));

 after() throwing(Exception e): reliabilityMethods()
 {
 if(!(e instanceof ApplicationException))
 {
 // Log error
 }
 }
}

Fig. 4. Reliability QoS aspect

The example given above can be extended with more QoS metrics. This example
illustrates the main points in using aspects for the implementation of non-functional
requirements.

4 Conclusion

In this article we proposed that AOP could help the transition from internal to
external services. By using AOP, non-functional requirements can be implemented
without doing a major redesign of the existing system. The feasibility of the proposed
solution has been demonstrated with a simple example written in AspectJ.

The example demonstrated that AOP could be a useful tool when an application
needs to accommodate QoS metrics that have not been previously designed into the
system. It also shows that this can be easily achieved using just a few lines of code. In
fact, the bigger the application, the more amount of time will be saved by using
aspects.

AspectJ was used in the example. However, there are other ways to implement
non-functional requirements in an “aspect oriented” way. It could be argued that by
using a component technology such as Enterprise Java Beans (EJB), QoS metrics
could be provided by the application server (e.g. through the use of method
interceptors in the JBoss EJB server [18]). The implementation of these interceptors
however, are not currently standardised, they would therefore be different for each
component server (Interestingly the latest version of the JBoss features heavy use of
AOP to implement non-functional requirements). It would also require the application
to be built as a component-based application from the start, which is often a lot more
time-consuming and skill-intensive than using plain Java objects. Using design
patterns such as the “proxy” pattern [19] could also alleviate the need for using

specific AOP technologies such as AspectJ. An example of this is provided by Filman
et al. [5]. This approach, however, is considerably more time-consuming and
therefore also more error-prone.

The proposed solution is applicable when the move from internal to external
services poses new non-functional requirements. Clearly, if no additional non-
functional requirements need to be fulfilled, the need to introduce aspect-oriented
concepts is not as obvious. Furthermore, the proposed solution presumes that the non-
functional requirements can be implemented in a generic, separated way using
aspects. In the case that not all new requirements can be implemented in this way,
aspects can still contribute to the implementation of some of the requirements. Thus,
we believe that the use of aspect-oriented programming can be a valuable technique
when moving from internal to external services.

5 Further work

In this paper we examined how aspect oriented programming can be used to tackle
the non-functional requirements when moving from internal to external services.
However, when integrating processes it is likely that other changes need to be
implemented in parallel with the new non-functional requirements. For example,
when integrating processes there might be a need for further process automatisation,
i.e. new functional requirements. A possible future extension of our work might
include principles guiding the combination of aspect-oriented programming with
traditional refactoring techniques to implement both non-functional and functional
requirements.

Another interesting question is whether AOP could prove useful for solving other
“architecture breaking” problems. There are several indications that this could be the
case. De Win et al. [20] have shown how AspectJ can be used to help implement
security features in an application. Filman et al. [5] have described how AOP can be
used for inserting “ilities”, such as stability and reliability.

References

1. Fremantle, P., Weerawarana, S., Khalaf, R., Enterprise Services. Communications of the
ACM, October 2002, Vol. 45, No 10 (2002)

2. Yang , J., van den Heuvel, W. J., Papazoglou, M. P., Service Deployment for Virtual
Enterprises. Australian Computer Science Communications, Vol. 23, Iss. 6 (2001)

3. Gudin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H. F., SOAP Version 1.2.
W3C Candidate Recommendation. (2002)

4. Chinnici, R., Gudin, M., Moreau, J., Weerawarana, S., Web Services Description Language
(WSDL) Version 1.2. W3C Working Draft (2003)

5. Filman R., et al., Inserting Ilities by Controlling Communications. Communications of the
ACM, Vol. 45 (2002)

6. Duclos F., Estublier J., Morat P., Describing and Using Non Functional Aspects in
Component Based Applications. 1st International Conference on Aspect-Oriented Software
Development (2002)

7. Lovelock, C., Vandermerwe, S., Lewis, B., Services Marketing. Prentice Hall Europe
(1996)

8. Piccinelli, G., and Stammers, E., From E-Process to E-Networks: an E-Service-oriented
approach. OOPSLA Workshop on Object-Oriented Web Services (2001)

9. Allen, P., Frost, S., Component-Based Development for Enterprise Systems: Applying the
Select Perspective. Cambridge University Press (1998)

10. Elrad, T., Filman, R., Bader, A., Aspect-oriented Programming an Introduction,
Communications of the ACM Vol. 44 (2001)

11. AspectJ, www.aspectj.org. Accessed in April 2003
12. Cysneiros, L., do Prado Leite, J., Non-Functional Requirements: From Elicitation to

Modelling Languages. International Conference on Software Engineering (2002)
13. Moriera, A., Araújo, J., Brito, I., Crosscutting Quality Attributes for Requirements

Engineering. 1st International Conference on Aspect-Oriented Software Development
(2002)

14. Georgakopolos, D., Schuster, H., Cichocki, A., Baker, A., Managing Process and Service
Fusion in Virtual Enterprises. Information System Vol. 24, No6 (1999) 429-456

15. Fowler, M., Refactoring – Improving the Design of Existing code. Addison-Wesley (1999)
16. Becker, C., Geihs, K., Quality of service and object-oriented middleware - multiple

concerns and their separation. International Conference on Distributed Computing Systems
(2001) 117 -122

17. Sheth A., Cardoso J., Miller J., Kochut K., Kang M., QoS for Service-Oriented
Middleware.. Proceedings of the Conference on Systemics, Cybernetics and Informatics,
(2002)

18. JBoss, www.jboss.org, Accessed in November 2004
19. Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
20. De Win, B., Vanhaute, B., De Decker, B., How Aspect-Oriented Programming Can Help to

Build Secure Software. Informatica Journal, Vol. 26, (2002) 141-149

